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We study the effect of the length scales � and � in the Navier–Stokes-�� equations on the energy spectrum
and the alignment between the vorticity and the eigenvectors of the stretching tensor in three-dimensional
homogeneous and isotropic turbulent flows in a periodic cubic domain, including the limiting cases of the
Navier–Stokes-� and Navier–Stokes equations. A significant increase in the accuracy of the energy spectrum at
large wave numbers arises for ���. The vorticity structures predicted by the Navier–Stokes-�� equations
also improve as � decreases away from �. However, optimal choices for � and � depend not only on the
problem of interest but also on the grid resolution.
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Subgrid models for turbulence seek to capture the influ-
ence of small-scale motions on large-scale phenomena, al-
lowing for accurate and efficient simulations of high-
Reynolds-number flows while resolving only large-scale
flow structures. The Navier–Stokes-� �NS-�� equations,
which combine Lagrangian-averaged dispersive nonlinearity
with Newtonian viscosity, provide one such model. These
equations involve a parameter ��0, with dimensions of
length, and direct numerical simulation �DNS� shows that
they capture the properties of flows involving eddy scales
greater than � �1�. Foias et al. �2� investigated the scaling
properties of the energy spectrum for the NS-� equations.
Graham et al. �3,4� studied numerically two-dimensional
magnetohydrodynamic turbulence using the Lagrangian-
averaged magnetohydrodynamic equations and investigated
the NS-� equations at significantly high Reynolds numbers.
The NS-� equations have also been compared to other re-
lated regularizations such as the Clark-� and Leray-� equa-
tions �5�. We examine a recent generalization, the
Navier–Stokes-�� �NS-��� equations, that attempts to ex-
tend the applicability of the NS-� equations by accounting
for the inherent separation of scales between the inertial and
dissipation ranges.

Chen et al. �6–8� obtained the NS-� equations by adding
a viscous term to the Euler-� equations of Holm et al. �9,10�.
For a statistically homogeneous and isotropic turbulent flow
of a fluid with constant density � and constant kinematic
viscosity �, the NS-� equations constitute a system

�v

�t
+ �grad v�u + �grad u�Tv = − grad

p

�
+ ��v ,

v = �1 − �2��u, div u = 0, �1�

for unfiltered and filtered velocities v and u and a filtered
pressure p. In the context of Lagrangian averaging, � is the
statistical correlation length of the excursion taken by a fluid
particle away from its phase-averaged trajectory. More na-
ively, � can be interpreted as the characteristic linear dimen-
sion of the smallest eddy resolvable by the model. Impor-
tantly, the NS equations are recovered from Eq. �1� in the
null-filtering limit �→0.

Working from a general framework for fluid-dynamical
theories involving gradient dependencies �11�, Fried and
Gurtin derived a slight generalization �12,13�,

�v

�t
+ �grad v�u + �grad u�Tv = − grad

p

�
+ ��1 − �2���u , �2�

of Eq. �1�1; together, Eq. �1�2,3 and Eq. �2� are the NS-��
equations. Like �, ��0 has dimensions of length. When Eq.
�1�2 is used to eliminate v from Eq. �2�, a regularized NS
equation for u results. This equation contains a dispersive
term, of energetic origin, with coefficient � and a dissipative
term with coefficient �. Within the phenomenological de-
scription of turbulence, it seems reasonable to view � as
representative of eddy scales in the inertial range, where the
dissipationless transfer of kinetic energy between intermedi-
ate scale eddies occurs, and � as representative of eddy
scales in the dissipation range, where viscous damping con-
verts the kinetic energy contained in the smallest eddies into
heat �12,13�. One thus expects that ���. Since specializing
Eq. �2� to Eq. �1�1 entails setting � to �, the NS-� equations
seem to involve an implicit equating of disparate length
scales. This is a vestige of the conventional argument leading
to Eq. �1�, an argument which associates viscosity with the
stretching tensor for the unfiltered velocity.

In this Rapid Communication, DNS is used to show that,
consistent with the foregoing considerations, taking ��� in
the NS-�� equations provides a means to capture the prop-
erties of flows involving eddy scales approaching �.

To begin, we use the identity grad�u ·v�= �grad v�u
+ �grad u�Tv+u�q, with q=curl v, to rewrite Eq. �2� as

�v

�t
+ �grad u�v − u � q = − grad

p

�
+ ��1 − �2���u . �3�

By Eq. �1�2,3, the unfiltered velocity v is solenoidal,

div v = 0. �4�

Moreover, Eqs. �1�2 and �4� imply Eq. �1�3. With the identi-
fication q=curl v, the system comprised by Eqs. �1�2,3 and
�2� is thus equivalent to that comprised by Eqs. �1�2, �3� and
�4�.

Approximating the unfiltered velocity v by a finite collec-
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tion I of Fourier modes vk via v�x , t�=�Ivk�t�eik·x and sub-
stituting into Eqs. �1�2, �3� and �4�, we obtain pseudospectral
equations of the form

dvk

dt
= Pk�u � q�k − �

1 + k2�2

1 + k2�2k2vk + fk,

vk = �1 + �2k2�uk, k · vk = 0, �5�

where Pk=1−k � k / �k�2 is the spectral projection operator,
k= �k� is the wave number, and the forcing term fk is intro-
duced to ensure that the total energy contained in each of the
first two wave-number shells remain constant in time with
ratio consistent with Kolmogorov’s −5 /3 law �1�. Setting �
to � in Eq. �5�1 gives Eq. �37� of Chen et al. �1�.

The pseudospectral equations were discretized using full
de-aliasing and second-order Adams-Bashforth time step-
ping. The code is based on one discussed by Albertson and
Parlange �14,15�. A cubic flow domain with side-length 2	l
and periodic boundary conditions was considered. To enforce
periodicity, I was restricted suitably. The initial velocity was
taken to be a Gaussian with prescribed energy spectrum pro-
portional to k4 exp�−2�k /k0�2�, with k0l=5.

Flow statistics were calculated by averaging over several
large-eddy turnover times 2	l /u�, where the mean velocity
fluctuation u� is given via the energy spectrum E�k� by u�

= �2�0

E�k�dk /3�1/2. To present dimensionless results, we

write E�1 /2	l� for the energy in the first two shells and
define a characteristic time �= l /�5E�1 /2	l� /6 associated
with the forcing fk. All results reported are for intervals no
shorter than one required for five large-eddy turnovers.

Figure 1 shows normalized energy spectra obtained using
a resolution of 1283 and a normalized kinematic viscosity of
�� / l2=0.01. Plots are provided for three choices of � and �:
�=�=0 �NS�; �=	l /4 and �=� �NS-��; and �=	l /4 and
�=	l /6 �NS-���. The corresponding computed values of
the Taylor microscale Reynolds number R� are all similar: 52
�NS�, 58 �NS-��, and 51 �NS-���. The results for NS-� are
close to those reported by Chen et al. �1�. Although the NS-�
results follow Kolmogorov’s −5 /3 law in the inertial range,
they do not agree with the NS results for k��1. However,
the NS-�� and NS results are indistinguishable in both the
inertial and dissipation ranges. These results are consistent
with the realization that setting � to � overdamps the re-
sponse and that setting ��� allows for a greater portion of
the inertial range to be captured. Although no effort was
made to optimize the choice of � for the selected value 	l /4
of �, choosing �=	l /6 allows recovery of an additional de-
cade of the energy spectrum. Other choices of � might well
yield further improvements.

Figure 1 also shows the NS-� and NS-�� energy spectra
of Fig. 1 normalized by the energy spectrum obtained from
the NS equations at each wave number. These curves accen-
tuate the improved accuracy of the NS-�� results, particu-
larly for k��1. The normalized NS-�� results are closer to
unity over a much greater interval of wave numbers, only
predicting a slight overshoot at low �1
2	lk
10� and high
�40
2	lk
45� wave numbers. This discrepancy, which is
most pronounced at low wave numbers, is also exhibited by
the NS-� model and might be partially due to the use of a
forcing scheme designed for the NS equations �16�. Finally,
while the NS-�� spectrum begins to diverge from that aris-
ing from the NS equations at wave numbers 2	lk�45, it is
nonetheless two orders of magnitude more accurate than the
counterpart arising from the NS-� equations.

The overshoot generated by the NS-�� equations for k�
�1 seems to depend on the choice of � and the resolution.
Figure 2 shows the normalized energy spectrum for resolu-
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FIG. 1. �Color online� �a� Energy spectra for NS, NS-� ��
=	l /4�, and NS-�� ��=	l /4 and �=	l /6�. �b� Energy spectra for
the NS-� and NS-�� results of �a� normalized by the energy spec-
trum for NS of �a�.
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FIG. 2. �Color online� Comparison of the NS-�� equation at
lower resolutions with the NS-equation simulation at higher
resolution.
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tions of 643 and 1283, along with the NS results for a reso-
lution of 2563. While all results show good agreement for
k��1, a marked increase in overshoot is evident for NS-��
on the finer grid.

We now consider the sensitivity of the energy spectrum to
variations in the scales � and � and the resolution. To study
flows at slightly higher Reynolds numbers, we increased the
magnitude of the forcing in the first two wave-number shells.
Figures 3 and 4 show results obtained with resolutions of 643

and 1283, respectively. The lower resolution �643� results
were obtained using a normalized kinematic viscosity of
�� / l2=0.0115, and resulted in Taylor microscale Reynolds
numbers R� between 65 and 100. For a given � and fk, de-

creasing � while holding � fixed increases R�. Conversely,
decreasing � while holding � fixed decreases R�. The finer
resolution �1283� results were obtained using a slightly
smaller normalized kinematic viscosity of �� / l2=0.0058, re-
sulting in still larger values of R�. Both studies show that, as
� is decreased with respect to �, Kolmogorov’s −5 /3 law is
better preserved and the decay in the dissipation range be-
comes steeper. On the other hand, agreement with the −5 /3
law deteriorates at higher wave numbers and the decay of the
energy spectrum in the dissipation range does not become
steeper with decreasing �.

Hot-wire anemometry experiments show that the vorticity
aligns with the eigenvector corresponding to the intermediate
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FIG. 3. �Color online� Influence, 643 resolution, of �a� � with
�=	l /4 and �b� � with �=	l /10 for NS-��.
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FIG. 4. �Color online� Influence, at 1283 resolution, of �a� �
with �=	l /4 and �b� � with �=	l /10 for NS-��.
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FIG. 5. �Color online� Normalized PDFs P�cos �i�: �a� NS ��=�=0� at 2563 resolution �b� NS-� ��=�=	l /4� at 1283 resolution, �c�
NS-�� ��=	l /4 and �=	l /32� at 1283 resolution.
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eigenvalue of the stretching tensor �17–19�. Jiménez �20�
provided a kinematical explanation for this observation.
DNS illustrates the importance of this phenomenon in the
formation of sheet-and tube-like structures �21–23�. Let di
�i=1,2 ,3� denote the eigenvalues of the filtered stretching
tensor D= 1

2 �grad u+ �grad u�T�, ordered according to d1
�d2�d3, and let ei �i=1,2 ,3� denote the corresponding
eigenvectors. The angle �i between the filtered vorticity �
=curl u and ei is given by cos �i=� ·ei / ���. Figure 5 shows
the probability density functions �PDFs� P�cos �i� for the
NS, NS-�, and NS-�� equations. To compute P�cos �i� at a
given time step, we divided the interval �−1,1� into subinter-
vals, did histogram counts for each direction cosine, and nor-
malized by the number of grid points. To obtain statistically
significant data, the process was performed at numerous time
steps after reaching steady state and averages were com-
puted. Plots are provided for �=�=0 �NS� at 2563 reso-
lution, �=�=	l /4 �NS-�� at 1283 resolution, and �=	l /4
and �=	l /32 �NS-��� at 1283 resolution. The results for NS
and NS-� are similar to those obtained by Chen et al. �1�.

For these results, P�cos �1� is closer to P�cos �3� than is the
case for the NS equations. As Chen et al. �1� noted, this
indicates that sheetlike structures predominate over tubelike
structures for NS-�. This phenomenon is clearly shown in
Fig. 6, which displays the difference �P�cos �1� between the
PDFs of the largest eigenvalues for the NS-�� and NS equa-
tions, at respective resolutions of 1283 and 2563, for various
values of �; �P�cos �1� decreases as � decreases, indicating
that the vorticity alignment arising from the NS-�� equa-
tions approaches that arising from the NS equations as �
decreases.

This Rapid Communication explores the utility of the re-
cently proposed NS-�� equations as a subgrid model for
turbulence and the improvements that are available in com-
parison to the established NS-� equations. Numerical evi-
dence clearly indicates better agreement with the standard
NS results for ���, consistent with the conjecture of Fried
and Gurtin �12�. Appropriate choices of both � and � pro-
vide a means to capture both large and intermediate scale
features of flows, even at coarser resolutions. The decay of
the energy spectrum in the inertial range is mostly affected
by � and the extent of the inertial range is mostly affected by
�. Numerical results for the PDFs obtained from the filtered
vorticity and the eigenvectors of the filtered stretching tensor
also indicate better agreement between the NS-�� and NS
equations as � decreases relative to �. While the results are
encouraging, questions remain concerning the optimal choice
of � given � and the grid resolution. This is a subject for
future work.
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DNS results and to the Center for Computational Science,
Engineering and Medicine at Duke University. Authors Kim,
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